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Vibrational Energy Transfer in a Diffusion-Flow Cyc]opropane-d2 Systema
J. F. Burkhalter, E. Kamaratos, and B. S. Rabinovitch

Department of Chemistry BG-10, University of Washington

Seattle, Washington 98195

Abstract

In a previous paper (ref. 2), the diffusion cloud technique was
applied to the 515197C3H6 isomerization system. Vibrational energy trans-
fer upon collision was measured. Relative reaction rates were measured
and, by calibration from other work (ref. 3), were converted to absolute
rate constants. In the present study, absolute rate constants for cyclo-
propane-d2 were determined in a diffusion-flow system. The relative rates
of the competitive isotopic isomerization channels were measured for two bath
gases, N2 and He.at two temperatures, 973K and 1073K. Values of the average
energy down-jump size <AE> were computed from both the absolute rates and the

isotopic relative rates by suitable modelling (ref. 3).
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Introduction

The diffusion cloud technique] has been used by us to measure vibrational
energy transfer for cyclopropane in an earlier study.2 In that work, only
relative rate constants could be determined and a calibration of rates derived
from other work3 was used to find absolute values. In the work reported in
this study, we have modified the diffusion cloud apparatus in order to make
total collection of all of the sample that issues from the reactor. In this
way, some rate measurements have been made under similar reaction conditions
to those used in the previous study. This has permitted a direct test of the
previously used calibration.

We have simultaneously extended the study to the measurement of competitive
isotopic rates by use of the substrate 1.1-cyclopropane-d2. Isotopic rate
effects in this system have previously been studied in static and flow reactors.3’4
Due to the fast transport in the diffusion cloud apparatus, higher temperature

effects can be studied. The unimolecular isomerization of l,l-cyclopropane-d2

proceeds as follows:

R V.9
s
LD R —

where the migrating atom is shown.
In the present note, absolute rates and comparative isotopic rates are
reported for two bath gases, N2 and He, at two temperatures, 973K and

1073K. Vibrational energy transfer amounts were computed from these measurements.




Experimental

Apparatus and Procedure. The diffusion cloud apparatus has been pre-

|
!
!

viously described.2 Flow velocities in the reactor were varied between 8-45
cm sec']. The apparatus was modified slightly by inclusion of two liquid
nitrogen-cooled traps, a large (50 mm diameter) glass trap followed by a
stainless steel protective trap, between the diffusion chamber and the main
Roots pump. In this way, all products and remaining reactant were trapped.
The glass trap could be isolated by two 1-inch brass Veeco bellows valves,

then warmed, and the product-reactant mixture transferred and collected through

a separate side-line. It was analyzed by GC using a 500 ft 30% 3M AgN03/ethy1ene
glycol-Chromosorb P column to separate the deuteropropene isomers and cyclo-

propane.

Treatment of Data. GC analysis of the reaction mixture yielded three peaks

which corresponded to the three isomers of dideutero propylene (I.I-propylene-dz.
3,3 propylene-d2 and 2,3 propylene-dz). The ratio of rate constants due to

3 D-migration and H-migration was determined from the simple expression,

k(D) _ C(2,3-propylene-d2)

k(H) C(1.l~propylene-dé) + C(3,3-propylene-d2)

where C is the experimentally determined product concentration.

The absolute rate constant for total reaction was calculated using a method
described in detail by Mu'lcahy5 for flow reactors. By this method, one first
calculates the rate constant assuming a flat velocity profile and no diffusion

effects, according to the equation,

kapp s . ln[C(cyclopropane)/(C(cyclopropane)+C(propy1ene))]/tC




| where C is the experimentally determined concentration and C(propylene) is the
, total concentrations of all three propylene isomers; tc is the nominal contact
time of the reactant in the reaction chamber. Corrections to kap are then

added to provide the true rate constant, where the correction is a function

5 s

of the apparatus constants and molecular properties (diffusion coefficient)
and may be determined from a graph that is presented by Mulcahy. The applica-

tion of these corrections has been described in greater detail in ref. 4.




Results

Experiments were performed at two temperatures 973K and 1073K using
two flowing bath gases, helium and nitrogen. Experimentally determined
k(D)/k(H) are shown in Fig. )as a plot against the specific collision rate w.
Experimentally determined total rate fall off constants are plotted in Fig. 2.
The fall-off curves were computed with a step-ladder probability distribution

3,6

model using a stochastic calculation. Model parameters for RRKM calcula-

tions are described in App. 1.

Absolute Rates. The absolute rates determined in this paper overlap
those of ref. 1 at 973K. They are in general agreement with, but somewhat
higher, than those determined by Kamaratos et al. Here, for nitrogen, the

rate constant is 0.18 (or 0.24 sec-]) with inclusion of a high value at

1

1 torr and 0.26 sec ' at 2.2 torr, as compared with 0.13 sec'] at 1 torr and

! at 2.1 torr, as measured earlier. For helium, the rate constant

1 1

0.23 sec”

at 0.8 torr and 0.22 sec
]

is 0.12 sec” at 2.2 torr, as compared to the

previous values 0.065 sec” ' at 1.0 torr and 0.14 sec-] at 2.1 torr. The
present results check the previously used calibration derived from another

system3 within useful, although not high, precision.

Collisional Efficiency. The k(D)/k(H) data (Fig. 1) give <AE> s the

average energy down jump, to be about equal for helium and nitrogen. At 973K,

<E\d equals 600 cm’1 for both nitrogen and heiium. At 1073 K, xE\d for nitrogen

is 550 cm' and for helium it is 650 cm™'. The fall off data (k/k )(Fig. 2),

gives slightly different <AE\d: at 973K, <E\d for nitrogen is 550 cm'l and \E\d

for helfum is 400 cm'.

450 cm'].

At 1073K, <E>, nitrogen is 300 em™! and for helium is

d
Thus, the values for nitrogen are in good concordance by the two

]

» -1
methods, with the average values being <AE> = 575 cm = at 973K and 425 cm ~ at

1073K. The corresponding average values for helium are 500 cm" for He, at 973K,

1

and 550 cm™ ', at 1073K. The value for helium is high, especially at 1073K, and

simply reflects experimental error.




Discussion

In the previous diffusion cloud paper,2 energy transfer was studied for

a variety of gases. In that paper at 975K, <E3 for nitrogen was 450 + 150 cm']
and 190 * 50 cm'l for helium. The nitrogen results here seem to agree very

well. The helium results here are evidently somewhat too high. But, nonetheless,
the data reveal that comparatively low collisional efficiencies are again

obtained for these weak colliders in the present work.




Appendix [. Vibration Frequency Assignments and Related Calculation Parameters

Complex I (D-migration) frequencies (cm"): 3020(4), 2260(1), 1440(1), 1300(1),
1250(1), 1230(1), 1130(1), 970(1), 960(1), 890(1), 850(1), 820(1), 770(1).
750(1), 470(2), 450(1)

d = 4, (I*/l)i = 1,195, E_ = 22450 cm'].
0

Complex II (H-migration) frequencies (cm-]): 3020(3), 2270(2), 1430(1), 1400(1),
1330(1), 1290(1), 1130(1), 1020(1), 970(1), 930(1), 850(2), 820(1), 780(1),
490(1), 470(1), 390(1)

d=8, (I"/D)? = 1.195, E, = 22250 et

Molecule frequencies (cm"): 3100(1), 3080(1), 3040(1), 3020(1), 2330(1),
2210(1), 1480(1), 1350(1), 1180(1), 1130(1), 1110(1), 1100(1), 1070(1),
1030(1), 1020(1), 980(1), 850(1), 810(1), 760(1), 620(1), 590(1)
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Figure Captions

Fig. 1 Isotopic relative rate data k(D)/k(H) vs w: a) 973°K, b) 1073°K.

. NZ‘ (O He. Solid curves are calculated on a step ladder model

with \.\E\d shown (cuf‘).

Fig. 2 Fall-off curves, k/k_ vs w: a) 973°K, b) 1073°K

' Nos [(J He. Curves are step ladder model with \.‘;E\d in cm_].
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